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We have studied numerically the stability of a two-dimensional Couette flow in 
a polytropic fluid subjected to a localized shear, using a pseudo-spectral method 
(Fourier-Chebyshev). The polytropic index has been chosen equal to 2 and a radial 
force (pseudo-gravity) is introduced in order to perform comparisons with the shallow 
water experimental results. When the Reynolds number is not too low, the initial 
flow which is purely azimuthal becomes unstable and a stable rotating pattern is 
formed, with a number of azimuthal modes which decreases when the Mach number 
increases. A qualitative agreement is found with the experimental results, although 
the spatial resolution constraint strongly limits the numerical Reynolds and Mach 
numbers. From the variation of the linear growth rate of the unstable modes with the 
Mach number, we are able to show the transition between a flow subjected to Kelvin- 
Helmholtz instability towards one essentially driven by a centrifugal instability, which 
is efficient for rotating supersonic flows if the angular momentum decreases outwards. 
The latter situation may occur for some flows in astrophysical disks. 

1. Introduction 
Very little is known about the dynamics of rotating flows when compressibility 

is effective. Besides theoretical motivations, many practical applications require an 
increased knowledge in this field. Astrophysical disks represent an important class 
of such flows, where the conservation of angular momentum in a given central 
gravitational potential leads to the formation of a shear flow in a disk which may 
be considered as thin. Such a bidimensional flow configuration explains many 
observations, including the formation of the solar planetary system. Note that we do 
not intend here to study the dynamics of astrophysical disks, which are supported 
by gravitation and not by rigid boundaries, may have a radial mean flow and also 
experience magnetic forces. It is hoped however that astrophysical problems may 
benefit from numerical and experimental advances for the simpler situation which 
will be examined below concerning the dynamics of a shear layer in a compressible 
rotating two-dimensional flow, uniform in the axial direction. 

It has been shown analytically that compressibility provides an efficient source of 
instability with respect to non-axisymmetric perturbations in the case where the angu- 
lar velocity is a power law of the radius (Goldreich & Lynden-Bell 1965; Papaloizou 
& Pringle 1984; Narayan, Goldreich & Goodman 1987; Glatzel 1987(a, h)).  
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The case where the shear is concentrated in a narrow radius range provides 
another theoretically and practically meaningful rotating flow configuration. An 
astrophysical example of such rotating shear flow may be found in some galaxies 
where the azimuthal velocity exhibits a narrow peak close to the central nucleus 
(see for example, Zasov & Zotov 1989). In the limit of negligible curvature, one 
gets a plane parallel flow subject to the classical Kelvin-Helmholtz instability. In 
the case of the thin disk approximation, the flow may reach supersonic velocities 
and the Kelvin-Helmholtz stability criterion is deeply modified by three main effects: 
compressibility, curvature and boundary conditions (centre and external medium). 
The stability of this flow configuration may be studied using experimental, linear 
theory and numerical approaches. 

This type of flow has been experimentally investigated by M. Nezlin and his 
co-workers (for a review, see Nezlin & Snezhkin 1993), exploiting the formal anal- 
ogy of two-dimensional gas dynamics with a shallow water system. In the dy- 
namical equations, the fluid height H of the incompressible shallow water system 
is analogous to the fluid density of a polytropic fluid ( y  = 2) while the surface 
gravity wave speed (gH) l i2  corresponds to the sound speed. These experiments 
make it possible to produce quasi-two-dimensional ‘supersonic’ flows in a rotat- 
ing container with a diameter of about 60 centimetres and show the formation 
of structures under forcing with a localized shear. The source of the instability 
could be the mixing layer, which is unstable at large scales for an incompressible 
fluid, as was realized in the experiments of Chomaz et al. (1983). It is experimen- 
tally verified by Fridman et al. (1985) that the supersonic regime is also unstable, 
and, since the two-dimensional mixing layer is known to become stable in the 
plane supersonic case (Blumen, Drazin & Billings 1975), another type of instabil- 
ity mechanism is thought to be acting, related to the negative gradient of angular 
momentum. The stability criterion for a two-dimensional perturbation was first de- 
rived by Landau (1944). In the case of shallow water flows, the analogous criterion 
has been described by Bazdenkov & Pogutse (1933) and experimentally verified by 
Antipov et al. (1983). 

The linear stability of the rotating shear layer has been examined by Morozov (1977) 
and Fridman (1979, 1989) in the inviscid case. In the limit of high radial wavenumbers 
which correspond to tightly wound spirals, when the angular momentum is radially 
decreasing, these authors find an instability growth rate proportional to the square of 
the angular velocity and inversely proportional to the sound velocity. These results 
show that compressibility is necessary in order for a ‘centrifugal instability’ to act 
in two-dimensional flows. Nezlin & Snezhkin (1993) present arguments indicating 
that the latter mechanism could be responsible for the instability observed in their 
experiments and also for some observed spiral galaxies. However, the available an- 
alytical studies cannot be used directly to describe realistic situations, since some 
approximations are needed to solve the dispersion equation: viscosity cannot be ne- 
glected in experiments and numerical simulations; observed spirals (experimental and 
astrophysical) are not tightly wound; bottom friction is significant in the experiments, 
etc. 

Prompted by the results of the rotating tank experiments, we have thus performed 
numerical experiments with parameters as close as possible to the laboratory configu- 
ration, in order to study the linear instability of the shear flow and also the formation 
of structures under the nonlinear interactions. 

The paper is organized as follows: the next section gives the general characteristics 
of the numerical method and the main parameters used to control the flow. Numerical 
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FIGUR~ 1.  Geometrical data. The shear is centred on radius Rs. The cylindrical coordinates arc r ,  #. 

results in the nonlinear regime are presented in $3. Section 4 concentrates on the study 
of the influence of the Mach number on linear instability growth rates to determine 
the nature of the instabilities and the concluding section gives a preliminary discussion 
of the relations between the experimental, analytical and numerical results. 

2. Numerical method 
The numerical code used in our simulation is a bidimensional pseudo-spectral code, 

written by N. Dolez and J. Leorat. The Navier-Stokes equations are solved in annular 
geometry, for a compressible, viscous barotropic fluid (the pressure is function of the 
density only: P - p y ) .  

The domain of simulation is an annulus, with internal and external radii, R! and 
RE as shown in figure 1. To remain as close as possible of the experimental settings, 
the main geometrical factors are kept constant. In non-dimensional units: RI = 0.2, 
RE = 2.2 and the radius of strongest shear (shear inflexion point) is R, = 0.8. 

We use rigid boundary conditions on the internal and external radii of the annulus, 
where the angular velocities (a, and a,) are fixed (cf. initial conditions $2.3 below). 

2.1. Equations 

The equations are non-dimensionalized assuming a constant kinematic viscosity, v .  
The unit of length is the annulus half-width (Ri - R;)/2, where the asterisk denotes 
a dimensional quantity. The speed unit is the tangential velocity at the internal 
boundary V; = s2;R;. The pressure P" is put in dimensionless form with the value 
of the sound speed c* calculated with the polytropic hypothesis: c** = yP*/p" .  The 
density unit is the mean density. 

In cylindrical coordinates in a fixed reference frame, the tangential velocity z q ,  the 
radial velocity ur and the density p satisfy 
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where 
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with 

where 

1 d(ru,) 1 duq+ + - + -  v . u  = -___ 
r dr r 84 

for a monoatomic gas. In the runs reported below, y = 2 in order to take advantage 
of the analogy of gas dynamics with experimental shallow water systems. 

The different forcing terms Fs, F f  and F, in the equations are discussed in $2.4. 

2.2. Spatial and temporal integrations 
The equations are discretized using a pseudo-spectral scheme with Fourier transforms 
in the azimuthal direction, which is periodical, and Chebyshev polynomials in the 
radial direction, which allows the implementation of the boundary conditions with a 
tau-collocation method. 

Time stepping uses a mixed Adams-Bashforth and Crank-Nicholson scheme: only 
the second radial derivatives appearing in the diffusion terms needs to be treated 
implicitly. The reason is that they would impose a constraint on the time step 
proportional to l/N4 (where N is the number of Chebyshev polynomials retained in 
the code) if they were treated explicitly. On the other hand, the second derivatives in 
the Fourier direction impose only a constraint of 1/M2 ( M  is the number of Fourier 
functions), no worse than the first Chebyshev derivative, which appears in any case 
in some of the nonlinear terms treated explicitly. The implicit matrix operator is then 
very simple, and can be reduced to a five-diagonal banded matrix. The boundary 
conditions are expressed in spectral space, and appears as two additional full lines in 
the implicit matrix. The direct method, like double sweeping, enables us to solve the 
system in a number of operations proportional to the spectral resolution N .  Most 
of our simulations have been performed with a resolution of M x N = 64 x 65 or 
64 x 129 and exceptionally of 128 x 129 grid points. 

2.3. Initial conditions and shear characteristics 
We choose a basic profile of angular velocity of the form 

Q(r ,  t = 0)  = A tanh 

where A and B are constants chosen so that f2 satisfies the boundary conditions. Such 
a profile (curve A of figure 2) represents basically the fitting of two solid rotation 
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FIGURE 2. Initial unperturbcd profilcs as a function of the radial coordinate: curve A for angular 
velocity Q ( r , t  = 0), curve B for azimuthal velocity V ( r )  = u$(r,t  = 0 )  = W ( r , t  = O ) v ,  curve C 
for angular momentum Q ( r ,  t = O)r2. The curvcs have bcen plotted for the following parameters: 
QI = 5,QE = 0.454545,e, = 0.1, RI = 0.2. R, = 0.8, RE = 2.2,N = 129. 

zones in the annulus, with a hyperbolic tangent transition zone of characteristic width 
e, situated at radius R,. We define the initial tangential velocity as 

V ( r )  = u4(r, t = 0)  = r 9 ( r ,  t = 0) 

which is plotted on figure 2 (curvc B). 
We superpose a white noise on the basic velocity around the shear for the instability 

to develop. The perturbed energy per mode varies generally from 1% of the initial 
basic kinetic energy for the lowest Fourier wavenumbers down to 0.001% for the 
largest ones. 

The initial density is uniform and set to unity. 
Let us define three dimensionless characteristic numbers fixed by the initial condi- 

tions. The fluid Mach number Ma is equivalent to a convective Mach number?: 

Similarly, the Reynolds number Re based on the same characteristic velocity jump 
and on the shear width is 

(2.6) 
iQ1 - QEI Rses 

2 I' 
Re = 

Ro is identified with a local Rossby number based on the velocity jump and the 
shear width: 

RO = (2.7) rotation term 

t Our Mach numbcr is two times smaller than the one of Nezlin & Snezhkin (1993). 
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2.4. External forces 
Equations (2.1) and (2.2) include several additional external forces which may be used 
to represent different physical effects; they are very important for comparisons with 
experiments : 

(i) Fr is a radial force ('pseudo-gravity') adjusted to compensate exactly the cen- 
trifugal force of the unperturbed velocity profile. The main effect is to assure a 
uniform density and no pressure gradient in the unperturbed state. A uniform den- 
sity, in equilibrium with the centripetal and gravity acceleration, corresponds to the 
experimental conditions of Nezlin et al. (1986) (constant depth in the shallow water). 
F, and Ff  are two different kinds of tangential forces devised to maintain the shear 
in the flow: 

(ii) In most of our simulations, we are interested in keeping a very narrow zone 
where the shear occurs in the flow: if we want to make some comparisons with the 
results of Nezlin & Snezhkin (1993) and of Chomaz et al. (1988), the width of the 
shear zone (= e,) should be less than one tenth of the radius R,. Due to a fairly 
high viscosity (which is imposed by a lack of resolution of our simulations) the shear 
we impose in the flow initially would be dissipated in a time shorter than, or of the 
same order as, the characteristic unfolding time of the instabilities. To prevent this 
artificial widening, we maintain the shear by the force F,, which compensates the 
viscous forces generated by the unperturbed profile : 

Note that F, is constant while F.6 changes according to the fluid dynamics. 
(iii) The third force, F j ,  acts as a friction and is proportional to the difference 

between the actual and the initial azimuthal velocity: we used it especially for 
comparisons with experiments, where the friction, dominating the viscous force, can 
play an important role in the dynamics: 

Ff = -a(u&, 4, t )  - V(r ) ) .  (2.9) 

Ff can be considered as a modelization of the viscous terms involving the axial 
shear of the flow in the experiments. It can be shown (Chomaz et al. 1988) that CI 

is proportional to v / H 2  where H is the thickness of the fluid layer. Note that this 
friction term has a strong stabilizing effect on the flow. The value of the coefficient is 
discussed in $3.1. 

Our numerical simulations enable us to study the transient flow where the linear 
instability dcvelops as well as the subsequent quasi-steady flow stabilized by the 
nonlinear interactions. The latter regime allows a direct comparaison of numerical 
and experimental results. It will be presented first, while the study of the time- 
dependent flow instability (linear regime) will be developed in $4. 

3. Formation of the stable structures 
The shallow water experiments show that a concentrated shearing force in compress- 

ible rotating flows leads to the formation of non-axisymmetric spiral-like structures 
for the density and velocity. The pattern angular velocity, which has the same sign 
as the mean azimuthal flow, and its geometrical characteristics (spirals number, pitch 
angle, etc. ) are related to the shear profile (controlled by the parameter esj, to the 
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e ,  0.8 0.4 0.2 0.06 
Re 145.5 72.7 36.4 10.9 
Ro 0.8 1.7 3.3 11.1 
? n o 1 2 3 3  

TABLE 1. Variation of the azimuthal order m of the most energetic mode as a func- 
tion of the shear width e,. The following parameters are fixed in the simulations: 
l /c = 0.5,Ma = 0.9,l/v = 100, Vr = V, = 1, x = 0 (no friction). The characteristic Reynolds 
number Re and the Rossby number Ro are given. 

mean radius of the shear annulus (Rs) and to the fluid characteristic Mach number 
Ma. 

Note that an analytical determination of the structures characteristics would be a 
difficult task since this is equivalent to searching for steady solutions of the nonlinear 
dynamical equations in the non-axisymmetric case. Moreover one must take into 
account the hysteresis which is encountered in the laboratory as well as in the 
numerical experiments (cf. Chomaz et al. 1988 in the incompressible case, or Nezlin 
& Snezhkin 1993 for the shallow water results). We thus concentrate here on the 
numerical approach, which obviously also presents some difficulties in the supersonic 
and high Reynolds number regimes. 

We only consider flows with a shear width as small as possible compared to the 
shear radius, in the transonic regime (Ma = l),  and do not intend to study the Rossby 
regime corresponding to relatively large shear width that dominates rotation in the 
nonlinear terms (Ro+l), which could be simulated using the same numerical code. 
Marcus (1990) has also numerically studied the stability of a two-dimensional rotating 
shear layer. Note however that in this computation the fluid is incompressible, inviscid 
and the Rossby number is small, so that quantitative comparisons are excluded. 

3.1. Choice of the main parameters 
After the initial transient evolution, a steady state is achieved. We have first checked 
that the azimuthal mode number mo is strongly dependent on the shear width e,, 
in agreement with the experimental results. Table 1 summarizes some characteristic 
values, varying only e, between 0.8 and 0.06 and keeping all other parameters fixed. 

The characteristic Reynolds number Re changes because of e, (cf. equation (2.6)). 
But the increase in % with decreasing e, is still obtained if we keep Re constant (for 
example by increasing l / v  with decreasing e,) because the viscous force damps the 
high frequencies first. 

In the first case (e,  = 0.8), one observes an anticyclonic? vortex with an increase 
of density. The low value of the Rossby number shows that it belongs to the Rossby 
regime rather than to that of the strong shear we want to examine. 

The shear width, the Mach number and the Reynolds number are severely con- 
strained by the available spatial resolution. As stated in the previous section, we try 
to maintain the smallest shear. The distance Ar between two adjacent grid points at 

t By definition, the cyclonic rotation direction is the one of the main flow and is given by the 
inner annulus. Any rotation in the opposite direction is called anticyclonic. In the Rossby regime, 
the Coriolis force balances the pressure force (geostrophic equilibrium). The centrifugal force is 
negligible and the eddies due to this regime are large enough and their proper velocity small enough 
to be influenced by the global rotation (of a planet for example). Their Characteristic life times arc 
several times the rotation period of the planet. The cyclones (rotation vector parallel to the planet 
one) are characterized by low pressures and the anticyclones by overpressures in the Rossby regime. 
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FIGURE 3. Linear initial growth rate as a function of thc parameter ci (see equation (2.9)) 
for different azimuthal mode orders. Initial white noise energy varies from 0.1% for mode 1 
to 0.0001% for the biggest one. We have kept the following simulations parameters constant: 
l /c = 0.1,Mu = O . l S , l / v  = 80,Re = 15,e, = 0.1, VI = VE = l .M x N = 64 x 65. 

the shear radius R, is 0.022 if the number of Chebyshev polynomials is N = 129. The 
shear width e, must be somewhat larger than Ar. Consequently, it seems reasonable 
to set the characteristic shear width at 0.1 in the simulations. The profile will be 
described by more than four points because, as can be seen on figure 2, the shear is 
larger than e,. 

As the Rossby number reaches values of the order of 7 in our simulations, the 
effect of the shear should dominate the effect of the rotation. Note however that the 
corresponding parameter in the experiments of Nezlin & Snezhkin (1993) can reach 
53, and a value of 20 in Chomaz et al. (1988). Consequently. our flow is expected to 
have smaller azimuthal frequencies because rno and Ro vary in the same direction. 

The value of the friction coefficient CI (cf. equation (2.9)) must be chosen according 
to the experimental characteristics. Its value does not change the nature of the 
instability because we do not study viscous instability. However if it is too high, it 
inhibits any instabilities by constraining the velocity profile to remain close to the 
initial equilibrium one. To give a quantitative account of this effect, the variations 
of the growth rates (defined at the end of $3.1) of the most unstable modes are 
represented on figure 3 as a function of a. The bigger the friction force, the smaller 
the growth rate. Note that in the incompressible case, Chomaz et al. (1988) define a 
friction-based Reynolds number : 

8 101 - Q E l &  Ref = 
es 

where 60 is the critical value in their computation and 80 in their experiments. These 
values are consistent with the present compressible case, where CI = 7.25 gives a 
critical Ref value of about 40 at Ma = 0.18 and Re = 15. 

To check if this friction force alone, which is dominant in the experimental set-up, 
is sufficient to maintain the basic profile, we have removed the shearing force F, and 
kept the friction force Ff  with two different coefficients. The comparison with the 
reference case (a)  where we keep F, is summarized in table 2. 



Instability of a rotating shear layer 67 

a # O  2 1 1 2 
h = 0 2 0.86 0.3 1 
c = 0 10 1.07 0.08 1 

TABLE 2. Comparison of three runs with various forcing terms. The following parameters are kept 
constant: l j c  = 0.7,iMLl = 1.4, I/v = 20, Rr = 4,e, = O.l ,QI = 5(VI = l ) ,QE = 0, M x N = 64 x 65. 
Iii41m,zx is the maximum value of the absolute mean tangential velocity IG4(r)l when the flow is 
stalionary. Note that the most unstable mode has the order n~ while the growth rates are given for 
the same azimuthal mode number of one. 

Run l / c  Ma l / v  Re M N Time step Final time 
A 0.1 0.18 80 14.5 64 129 5 x 60 
B 0.7 1.3 20 3.6 64 129 1 x lop5 240 
C 1.0 1.8 9 1.6 128 129 2 x lop5 120 

TABLE 3. Characteristic parameters of three different simulations. Other parameters 
(e,  = 0.1, Vr = VE = -1, x = 2) are kept fixed. 

We verify that the ‘friction’ force alone maintains the profile in its initial shape if 
the parameter is large enough but then the instability needs a long time to develop 
(run c). Consequently, we will keep the force F, compensating the viscous damping 
and the restoring force F f  with usually the intermediate value a = 2 (run a). 

We have explained above the choice of the values of the shear width e, and of the 
parameter. Table 3 specifies the other parameters for the three typical runs discussed 
in the next sections. 

Note that the nonlinear flow evolution generates excitation on smaller and smaller 
scales and as a consequence of the finite spatial resolution, high Mach number 
simulations require relatively low Reynolds numbers. This resolution constraint 
explains why steady patterns are presented in this section only for Ma not exceeding 
2, while linear growth rates may be given for Mach numbers above 20 in the following 
section. 

In all these runs, the geometry is unchanged (see $2) and the rotation period of the 
inner boundary is about 2n/& = 1.26 in non-dimensionalized time units. 

The spectral energy for each azimuthal mode in integrated radially gives a global 
measure of the main features of the flow evolution. The azimuthal power spectrum is 
thus defined as 

N 

S ~ K d t )  = 1 { lfi,(m, a, t)12 + IilT(rn, n, 0 1 2 )  , (3.1) 
n=O 

where f(m, n, t )  is the Fourier-Chebyshev component of the function f(4, r ,  t ) .  The 
growth rate, for a given wavenumber, is proportional to the slope of the power 
spectrum logarithm as a function of time. 

Structures are visualized using density and vorticity contours and velocity vectors. 

3.2. Much nunzher 0.18 (Run A )  
The time evolution of the energy of the first 10 Fourier modes, for this simulation at 
weak Mach number, is given in figure 4. The following successive stages are easily 
identified : 
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FIGURE 4. Run A. Decimal logarithm of the spectrum defined by equation (3.1) as a function of 
time t for the first ten orders of the Fourier modes: curve A for tn = 1, curve B for m = 2, curve C 
for rn = 3, . . . , curve J for m = 10. The initial white noise energy corresponds to one order below 
what is given in 52.4. For 0 < t < 20, there is a point for each time interval 0.5. For 20 < t < 40, 
there is a point for each time interval 1. 

(i) fast transient (during less than a rotation period) due to the fact that the 
arbitrary initial conditions are not the eigensolutions of the linearized dynamical 
equations ; 

(ii) exponential growth to about t = 5 (about 3 rotation periods); 
(iii) fluctuations due to non-linear interactions during about ten rotation periods; 
(iv) appearance of dominant stationary modes, mode m = 3 and its harmonics 

(labels C, F, I), while the others are decaying quasi-exponentially to at least t = 60 
(and they are presumed to decay until they reach the numerical round-off level). 

The domination of mode rn = 3 is clearly visible on the density contours at time 
t = 40 (figure 5a), with three depressions centred on the shear mean radius at r = R, 
(the minimal density is 0.974) separated by smooth density maxima (1.01). Outside 
the shear mean radius R,, density maxima along three arms are obtained. 

The inner cylinder is rotating in the clockwise direction (retrograde, Q, < 0 ) 
and the initial vorticity at the shear mean radius R, has a strong positive maximum 
(V x u[,  = 252 + rdO/dr  = 32). The vorticity contours at time 40 (figure 5/31 show a 
complicated structure with two concentric areas exhibiting a strong radial vorticity 
variation while the density minima coincide with an enlarged domain of positive 
vorticity. Negative vorticity appears in between, where density is maximum. Plots of 
the perturbed velocity fields (figure 5c), defined by the difference between the local 
velocity and the mean azimuthal effective velocity, show also that the density minima 
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FIGURP 5. Run A at t = 40. (a) Density isolines: the mean flow and the three vortices move in 
clockwise direction. ( b )  Velocity curl isolines. (c) Perturbed velocity vectors (u4 - U$,u, - Tir)(,#,,+ 
where an overbar denotes an average along the tangential direction. 



70 M. Tomasini, A? Dolez and J. Leorat 

0 

-2 ------c--E---c 

__o- 

n -4 

* a, 
ti 
M 
0 

'ir W 

* 
-6 

-8 

-10 
0 40 80 120 160 200 

Time 
F I G U K ~  6. Run B. Decimal logarithm of the spectrum defined by equation (3.1) as a function of 
time t for the first ten orders of the Fourier modes: curve A for m = 1, curve B for m = 2, curve C 
for m = 3, . . . , curve J for m = 10. Each curve is plotted for time units varying from 2 in increments 
of 2. 

(resp. maxima) coincide with eddies rotating in the anticyclonic (resp. cyclonic) 
direction. The perturbed flux lines are closed. 

The angular velocity of the pattern (Qdv) is obtained from the temporal evolution at 
a given point of any flow dynamical variables such as density; then ad, = -1.57k0.08 
in non-dimensionnal units. The patterns drift at a speed lower than the mean 
azimuthal velocity at R, and they spread beyond this radius where the velocity falls. 
The convective Mach number based on the real convective velocity of the patterns 
can be written 

''' - where V,, = OdrRs. 
c Mdr = (3.2) 

Then Mdr = 0.130f01. We verify that the number of structures decreases either when 
the Mach number or the shear width increases. Nezlin & Snezhkin (1993) obtained 
three spirals at a higher Mach number 1.6 < Ma < 2.2 Their results are compatible 
with ours if we consider that their ratio e,/Rs is smaller (local Rossby number 20 
compared to 7 in our case). 

3.3. Mach number 1.3 (Run B )  
The evolution of the modal energies of the simulation at transonic Mach number 
is found to be more complex in the transient phase than before as may be seen on 
figure 6. The first three stages (cf. run A) extend to about 30 rotation periods and the 
even modes (label B corresponds to m = 2) seem to form a stationary state. However 
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at t = 40, the odd modes suddenly begin to grow exponentially, leading to a steady 
state dominated by the mode m = 1 after t = 100. 

Figure 7(a)  shows the density contours at time t = 54 when mode 2 is predominant: 
the density minima are close to the shear mean radius but much lower (0.38) than in 
run A at low Mach numbers. The same zone also exhibits strong density gradients, 
but it can be noticed that the density maxima are found at the inner and outer 
boundaries showing the influence of reflecting boundaries at high Mach numbers (cf. 
Dolez & Leorat 1991). 

It is interesting to compare the qualitative shape of our simulations and the two sta- 
ble structures of the shallow water experiments figure 8.2 of Nezlin & Snezhkin (1993), 
although they obtain this configuration at a higher convective Mach number Ma of 
2.2. The white vortices between grey spirals (recall that the spirals outline elevations 
in shallow water, i.e. overpressure regions) correspond to our two spread minima of 
density. Our spirals spread at the outer edge, creating optima, because of reflections, 
while the experimental set-up avoids reflections. 

As in 63.2 above, the minima of density corresponding to a spreading of positive- 
vorticity regions (figure 7b)  are separated by negative-vorticity regions still confined 
to a narrow band. 

The most significant result on velocity vectors is given by the pertubed flow 
(figure 7c):  the eddies are no longer visible around the density minima and are 
replaced by two centripetal jets which collide on the external wall, allowing angular 
momentum transport. 

The nature of the instability (see also Nezlin et al. 1986) will be discussed but we 
can already see that the shape of our trailing structures is more spiralled than on 
figure 5(a) at Ma = 0.18 because they drift at a higher corresponding Mach number: 
adr = -1.40 k 0.08 3 V,, = -1.12 f 0.07 3 Mdr = 0.53 f 0.05 (see equation (3.2)). 

The transition from m = 2 to rn = 1 is shown on a sequence of density contours 
(figure 8). The change of mode happens by a kind of shredding interaction after 
one mode has drifted toward the other. The transition occurs after the mean 
tangential velocity profile has smoothed. During the transition it broadens again 
before becoming stationary until the end of integration (t = 240). Note that this 
widening is also observed in the shallow water experiments (see figure 8.6 of Nezlin 
& Snezhkin 1993). 

At dimensionless time 200, the unique structure seems to have retained the memory 
of the old transition period. The calculation at this time of the pattern drift speed 
gives SZd, = -1.16 k 0.06 - Vdr = -0.88 & 0.05 - Mdr = 0.39 & 0.01. The density 
contrasts are stronger than in the m = 2 regime (the minimum is 0.28 in the shear 
region and the maximum is 2.4 at the internal boundary) and the perturbed velocity 
plot is always dominated by a radial jet-like flow. 

In this subsection, we have exhibited a transition between two patterns (rn = 2 
then m = 1). Indeed, changing Ma or e, by a few tenths of a percent leads to the 
stabilization of mode 1 or 2 after the initial linear phase. 

In view of this transition, the reader might wonder if the three structures of the 
first run A could collapse into two and then into one stable structure. This is in fact 
not the case, because: 

(i) the total integration time (60) is twelve times the linear growth time in run 
A (figure 4). Now, the odd modes of run B (figure 6) begin to increase during the 
nonlinear phase, at t = 40, which is only two times the linear growth rate; 

(ii) when the odd modes in run B increase, the most energetic one has decreased 
its energy to the value of lop6. At t = 60, where we stopped the simulation of run A, 
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FIGURE 7 .  Run B at t = 54. (a) Density isolines: the mean flow and the two vortices move in 
clockwise direction. (b)  Velocity curl isolines. ( r )  Perturbed velocity vectors (see caption to figure 5). 
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FIGURE 8. Run B. Density isolines at time t = 90,94,98,100. Transition between the azimuthal 
mode 111 = 2 and m = 1. 

the most energetic of the decaying modes has the equivalent energy of 
is much lower. 

which 

3.4. Mach number 1.8 (Run C) 

In order to avoid the numerical instabilities associated with the accumulation of 
energy at the smallest scales, for this simulation at a higher Mach number, we have 
been compelled to increase the azimuthal resolution to M = 128 instead of 64 and 
to also increase the viscosity (Re = 1.6). Thus the characteristic linear growth time is 
large (figure 9). During the linear phase the mean azimuthal velocity looses only 9 %  
of its initial energy before becoming stationary. The overall results are similar to the 
preceeding run. 

The strongest minimum (0.35) is associated with a maximum density at the outer 
edge (figure 10a), the transition being very thin (strong gradient at the structure edge). 
The perturbed flow (figure lob)  forms two undulating radial jets, one centripetal and 
one centrifugal. 
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FIGURE 9. Run C. Decimal logarithm of the spectrum defined by equation (3.1) as a function of 
time t for the first ten orders of the Fourier modes: curve A for m = 1, curve B for m = 2, curve C 
for rn = 3, . . . , curve J for m = 10. Each curve is plotted for time units varying from 2 in increments 
of 2. 

Simulations at higher Mach and Reynolds numbers would be highly instructive to 
study the possible resonance of turbulent flows but would involve greater numerical 
resources. The available numerical tools do allow however a more detailed study 
of the first linear phase of the compressible shear instability which will give more 
information on its nature. 

4. Nature of the instabilities 
As already indicated in the introduction, for a given set of flow parameters (geom- 

etry of the shear profile, Mach and Reynolds numbers, etc. ), two types of terms may 
be relevant in the dynamical equations to determine the characteristics of the linear 
instability: 

(i) those remaining on taking the limit of infinite curvature radius, which are acting, 
for example, in the compressible plane mixing layer; 

(ii) those present in the centrifugal instability criterion (Morozov 1979) : a negative 
gradient of angular momentum is needed, as well as finite curvature radius and sound 
speed. 

The numerical simulation makes it possible to show the relative contributions of 
both kinds of physical effects by studying the variation of the linear growth rate when 
only one parameter is modified. Here we have chosen to vary the Mach number since 
the compressible mixing layer instability is known to be sensitive to this parameter. 
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FIGURE 10. Run C at t = 120. (a )  Density isolines: thc mean flow and the single vortex move in 
clockwise direction. ( b )  Perturbed velocity vectors. 

To obtain a perfect rectilinear power spectrum slope, we must decrease the white 
noise energy givcn as an initial condition in $2.3 by a factor 10. This is achieved in 
$4.1 when we study the linear growth rates. 

4.1. Variation o f t h e  growth rates with the Mach number 

We only deal here with the linear phase of the instability and keep the Reynolds 
number constant as well as the geometry (inner, shear and outer radius). The 
boundary velocities, the shear width and the friction force are similar to those used 
in $3. 
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F~GURE. 11. (a)  Growth rate as a function of the characteristic Mach number Ma between 
0.18 and 27 for the first five orders of the Fourier modes. The simulations parameters are: 
V f  = VE = -1,l/v = 80, Re = 14.5, e, = 0.1, x = 2, M x N = 64 x 65. The uncertainty in the growth 
rate is about 0.06. (b)  Enlargement of (u)  between 0.18 <Mu < 3.6. 

Figure 11 shows the linear growth rates (see 93.1 for the definition) of the five 
lowest azimuthal modes (still including the most unstable mode) as a function of the 
characteristic Mach number defined in equation (2.5). 

We note first that, as expected, the growth rates vary strongly in the transonic 
regime and saturate above Ma = 10 with the domination of the lowest mode ( rn = 1). 
Let us examine in more detail the transition around Ma = 1 (figure l l h ) :  

(i) below Ma = 2, the growth rates of all modes except rn = 1 and MZ = 2 decrease 
when Ma increases; 

(ii) the rank of the most unstable mode decreases when M a  increases: mo = 5 at 
Ma = 0.18, rno = 4 at Ma = 0.28,rno = 3 at Ma = 0.64,rno = 2 at Ma = 0.96 and 
mo = 1 at Ma = 2.4; 

(iii) the growth rates of the two first modes increase with the Mach number. 
CRmmations (1) and (ii) are in agreement with the analysis of the compressible 

plane shear layer (Blumen et al. 1975) and with the experiments on rotating shear 
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l / c  0.1 0.4 0.5 
Ma 0.18 0.8 1.0 

Growth rate 5.38 for mo = 7 3.19 for mo = 5 > 0 Vm 
QI = 5, QE = 0 2.92 for m = 3 

Growth rate 5.35 for mo = 7 0.13 for mo = 3 < 0 Vm 

TABLE 4. Initial linear growth rate as a function of the Mach number for two configurations: the first 
with the angular momentum decreasing outwards, the second with increasing angular momentum 
with r .  The constant parameters are: e,7 = 0.1, l / v  = 1000 that is Re = 200, CI = 2, M x N = 64 x 65. 
mo is the order of the most unstable mode. 

0 1  = 0, 0 E  = 5 

flow; (iii) may be attributed to another instability, say centrifugal instability, favouring 
the small wavenumbers. In the next subsection, we will try to identify more precisely 
the centrifugal instability and we will provide evidence of the superposition of the 
latter instability with the Kelvin-Helmholtz instability at weak Mach numbers. 

4.2. Distinction between the Kelvin-Helmholtz ( K H )  and the centrifugal instabilities 
Two kinds of simulation are useful for the detection of a centrifugal instability. 

First, as the classical linear theory predicts the absence of centrifugal instability 
when the absolute value of angular momentum (IQr21) increases with the radius, 
we have taken Q1 = 0 and different outer angular velocities Q E .  We find that 
an instability develops up to a critical Mach number, with the KH characteristics 
(decreasing growth rates with increasing Mach numbers). Beyond this Mach number, 
M u K ~  = l/c, the initial flow (local small perturbation superimposed to the the basic 
flow) is stable, whatever the viscosity (assumed to be greater than the critical viscosity). 
MUKH depends on Q E :  it varies from 0.8 when QE = 2 to 0.4 when QE = 10. Table 4 
demonstrates the domination of the KH instability at weak Mach numbers (since the 
growth rates are close whatever the sign of the angular momentum gradient when 
Ma = 0.18). At supersonic Mach numbers, the centrifugal instability only may exist 
(positive growth rate when angular momentum decreases outwards) and at transonic 
Mach numbers both instabilities coexist. 

Secondly, to evaluate the impact of the curvature term on the instability, we have 
removed the centripetal acceleration and the pseudo-gravity F, from the dynamical 
equation of the radial velocity. As the Mach number varies, the linear growth rates 
of the five lowest wavenumbers are given in figure 12. All other parameters are kept 
identical to those of $4.1 except the external boundary, which is now at rest, so that 
any centrifugal instability should be relatively favoured. 

It can be observed that the growth rates decrease when Ma increases, as before for 
modes m > 2. For all modes, the growth rates remain close to zero above Ma = 1 
compared to figure 11 (10 times smaller for the mode m = 1). 

The growth rates obtained cannot be compared to those calculated for the non- 
stationary modes of the plan-parallel shear layer by Blumen et al. (1975) because 
we have not eliminated all the curvature terms. However, even with no curvature 
term, they proved, by analytical tools, that the hyperbolic tangent shear layer is 
unstable to two-dimensional disturbances, at a Mach number above one, through the 
intermediary of a second mode with growth rate one order of magnitude less than 
the first mode, responsible for the instability at subsonic Mach number. 
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FIGURE. 12. Growth rate as a function of the characteristic Mach number Mu for the 
firct five orders of the Fourier modes. We have removed from the dynamical equa- 
tion the centrifugal force and the force F,. The other simulations parameters are: 
Vj = -1, V,  = O , l / \ l  = 80, Re = 16, P, = 0.1, x = 2, M x N = 64 x 65. 

These results are particularly significant and could not be obtained experimentally. 
They show that two types of instability are encountered in the compressible shear 
flow : 

(i) the KH instability, present whatcver the direction of the angular momentum 
gradient, not affected by the curvature terms, and vanishing at around sonic Mach 
number; 

(ii) the centrifugal instability which needs a negative radial gradient of angular 
velocity absolute value, centripetal acceleration and a sufficient Mach number to 
develop. 

Chagelishvili, Rogava & Segal (1994) shows a mechanism by which the two- 
dimensional compressible plane Couette flow is unstable with a linear algebraic 
growth rate. We did not observe this kind of instability in our simulations, which is 
natural when some exponential growth exists; but we also did not observe it even in 
the case of an outward increase of angular momentum absolute value, in supersonic 
flow, where we had no exponential instability. 

It would be interesting to extend the stability analysis of the rotating shear layer 
beyond the present study by taking into account the possibility of  subcritical finite- 
amplitude instabilities (Dubrulle & Nazarenko 1994). Note that the main feature of 
our flow is the strong shear imposed at the radius R,, which makes it very different 
from a Couette flow. 

5. Discussion 
5.1. Comparison with experiments 

To our knowledge, there are no other numerical studies of the nonlinear stability 
of the rotating shear layer in the transonic regime. It is thus important first to 
compare the results with those of the experiments and check their reliability before 
going further in our investigation. The numerical simulations are in agreement 
with the main experimental results of Nezlin & Snezhkin (1 993), despite inescapable 
differences in the forcing, the boundary conditions and in the Reynolds number: a 
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localired shear in a subsonic and supersonic rotating flow is the source of instabilities 
which leads to the formation of rotating structures that are less and less numerous as 
the Mach number increases. At transonic Mach numbers, trailing spirals (as opposed 
to leading spirals) form. Their inner tips are situated between depressed vortices, 
around the radius of strongest shear speed. 

In the experiments and in our simulations the vortices drift velocity, compared to 
the wave velocity, increases with the Mach number and the spirals are wound more 
tightly as the Mach number increases (cf. figure 8.1 of Nezlin & Snezhkin 1993). This 
fact is easily understandable if we realize that the vortex emits waves (surface gravity 
waves in the experiments and sound waves in the numerical simulations). A wake is 
creating if the vortex moves faster than the wave ( Vdr/e > 1 or Mdr > 1, see equation 
(3.2)), in the case of a point source. And if the source has a circular trajectory, the 
wake looks like a spiral winding more tightly as the source moves faster and which 
bends backward. For a spread source, like our vortices, wakes are present even with 

However, we also observe trailing spirals between vortices during the linear stage 
of the instability where there are no nonlinear interactions: the vortex would not emit 
waves. If so, spirals are not generated by vortices during the linear development. In 
that sense, we agree with the conclusions of Baev, Makov & Fridman (1987), who 
computed the linearized dynamical equations, stating that : 

Mdr < 1. 

(i) the spiral-vortex structure has already formed during the linear stage; 
(ii) the spiral and vortices are created simultaneously and neither generates the 

other. 
The linear phase of shear instability is only a transition to the interesting phase 

with nonlinear interactions where we think, together with J. Sommeria (personal 
discussion), that waves are vortices’ wakes. 

In the limit of weak Mach numbers, the prevailing instability is of the Kelvin- 
Helmholtz type. The initial linear growth rates fall with increasing compressibility 
effects. This instability vanishes at a Mach number depending on the Reynolds 
number and on the shear profile. This value is to be compared with the theoretical 
limit of 

In the limit of large Mach numbers and with the condition of negative gradient of 
angular momentum absolute value, the most unstable mode is one-armed and stems 
from the two-dimensional centrifugal instability. Growth rates are discussed below. 

for an inviscid vortex sheet flow (Landau 1944). 

At intermediate Mach numbers both instabilities may occur simultaneously. 
Qualitative differences in the spiral shape are observed between numerical and 

experimental investigations, because : 
(i) the smaller ratio RE/R,  in the numerical study allows less room for the spiral 

development towards the periphery; 
(ii) our numerical spirals are less tightly wound (bigger pitch angle) because the 

vortices drift at a velocity, compared to the wave speed, much lower than those of 
the experiment. 

The resolution limit in the supersonic regime constrains the numerical Reynolds 
number to rather small values, which may explain why no turbulent run was obtained. 
On the other hand, the forced bidimensionalization of the structures does not help the 
turbulence, essentially three-dimensional, to develop. A turbulent state is achieved in 
flows with a smooth velocity profile only via three-dimensional perturbations (Orszag 
& Kells 1980). However, it is not a necessary condition (cf. open flows such as 
Kolmogorov flow) and we intend to investigate the small scales in order to verify if a 
realistic turbulent regime can be reach. 



80 M .  Tomasini, N. Dolez and J. Lkorat 

The lack of resolution causes quantitative differences too. We are constrained by 
the width of the shear so that our Rossby number (based on the velocity jump and the 
shear width, see equation (2.7)) is typically three times smaller than the experimental 
one of Nezlin & Snezhkin (1993) and of Chomaz et al. (1988). As it is known and 
checked in this paper that the azimuthal wavelength of the instability varies with the 
shear width, we understand that the order of the most unstable mode is smaller (for 
the same shear radius) than in the quoted experiments. For example, Snezhkin and 
Sommeria (personal communication) obtained nine stationary vortices at low inner 
angular rotation with a Rossby number of 55 (outer annulus at rest), compared to 
three or four in our simulations with a Rossby number of 7. In order to cope with 
higher Reynolds number and smaller shear width, a spectral code with two adjacent 
Chebyshev radial grids seems useful (work currently in progress). 

5.2. Comparison with theoretical predictions 

The experiments cannot give information about the transient linear phase of the 
instability development. Let us then here compare our results with the local analysis of 
the centrifugal instability of Morozov (1979), who considers a homogeneous adiabatic 
non-viscous compressible gas in rotation. He assumed that the instability takes the 
form of tightly wound spirals for analytical convenience. A discontinuity in the 
rotation curve led to the first-order instability growth rate do) at infinite Reynolds 
number: 

with QI > Q E .  Thus the slope of the growth rate as a function of Mu should be 
l Q I  + QEJ.  Let us take the evolution of the mode m = 1 in the simulations of 
figure l l (b) .  Between Ma = 0.5 and 2 the growth rate varies linearly with Ma but is 
influenced by the KH instability (a # 0 at Mu = 0). The slope is 1.8 on the graph 
compared to (QI + Q E l  = 5.45. Xote also that the numerical Reynolds number is 
small (Re = 14.5). Moreover, in taking into account a weak blurring in the rotation 
discontinuity, Morozov corrects the growth rate with the additional negative rate o(IJ : 

when Mu < (2RA/e,)'/2 = 4. This relation shows that the small orders m are 
favoured and that large shear widths e, have stabilizing effects. The maximum of 
CT = do) +dl) = A,,,Mu-BA4a3, by taking QE = 0, occurs at Mu = 1.12 for the mode 
rn = 1 and at Ma = 1 for the mode m = 2 with our numerical parameters of figure 7 
and gives the following growth rates: 3.5 for rn = 1 and 2.5 for m = 2, i.e. closer to 
but still larger than the numerical ones. The superposition of KH instability in our 
simulations may be responsible. Notice also the saturation of the growth rates at high 
Mach numbers while Morozov analytical approximations predicted the extinction of 
the centrifugal instability at a Mach number close to 2. 

Simulations of flows at supersonic velocity represent a challenge. Our simulations 
at Ma = 1.8 show that two obstacles must be overcome in order to obtain useful 
results: the Reynolds number must be increased and the boundary effects should be 
minimized. Perhaps both sources of numerical trouble may be cured together. 

In the context of the present study, astrophysical disks can be described as super- 
sonic rotating shear layers, where instabilities can be sought as due to the presence 
of shear, or to the coupling of shear and rotation. However, numerical simulations 
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alone cannot provide a complete physical explanation of the nature of the instability. 
In the case of a smooth angular velocity distribution, some approximations have 
been introduced, and an analysis in terms of over-reflection of waves on a critical 
layer has been invoked (Goldreich & Lyndell-Bell 1965; Narayan et al. 1987). In 
the situation analysed by Morozov, and in our own simulations, it happens that the 
instability is directly related to the presence of a strong shear in the flow. It would 
be useful to know whether some link exists between both instabilities and to derive 
some instability criterion which can be used in astrophysical situations. In any case it 
appears that shear and centrifugal instabilities can be responsible for the appearance 
of large vortices and spiral structures in disks: from there, the density condensations 
may provide seeds when self-gravity is not negligible (as in protoplanetary disks or 
in stellar formations in galactic spiralled arms) and the turbulence would contribute 
efficiently to the transport of angular momentum. 

We thank M. Nezlin for inspiring the theme of this study and providing useful crit- 
ical remarks. We are grateful to J. Sommeria and E. N. Snezhkin for communicating 
their experimental results and for the stay of M. Tomasini at Lyon. 

This work could not have been carried out without the computation time provided 
by the CCVR (Centre de Calcul Vectoriel pour la Recherche) and by IDRIS (Institut 
de Diveloppement et des Ressources en Informatique Scientifique). 

REFERENCES 

ANTIPOV, S. V., NEZLIN, M. V., SNEZHKIN, E. N. & TRUBNIKOV A. S. 1983 Stabilization of a 

BAEV, P. V., MAKOV, Y. N. & FRTDMAN, A. M. 1987 Formation of spiral-whirl structure of VK 

BAZDENKOV S. V. & POGUTSE 0. P. 1983 Supersonic stabilization of a tangential shear in a thin 

BLUMEN, W., DRAZIN, P. G. & BILLINGS, D. F. 1975 Shear layer instability of an inviscid compressible 

CHAGELISHVILI, G. D., ROGAVA, A. D. & SEGAL, T. N. 1994 Hydrodynamic stability of  compressible 

CHOMAZ, J. M., RAE~AW, M., BASDEVA~VT, C. & COWER, Y. 1988 Experimental and numerical 

DOLEZ, N. & LEORAT, J. 1991 Numerical simulations of supersonic plane Couette flow instabilities. 

DUBRULLE, B. & NAZARENKO, S. 1994 On scaling laws for the transition to turbulence in uniform- 

FKIIIMAN, A. M. 1979 Origin of the spiral structure of galaxies. Sou. Phys. Usp. 21, 536. 
FRIDMAV, A. M. 1989 In Djlnamics of Astrophysical Disks (ed. J. A. Sellwood), p. 185 Cambridge 

University Press. 
FRIDMAN, A. M., MOROZOV, A. G., NEZLIN, M. V. & SNEZHKIN, E. N. 1985 Ccntrifugal instabilities 

in rotating shallow water and the problem of the spiral structures in Galaxies. Phys. Lett. 
109A, 228. 

GLATZEL, W. 1987a On the stability of compressible differentially rotating cylinders. Mon. Not. R. 
Astron. Soc. 225, 227. 

GLATZEL, W. 19876 On the stability of compressible differentially rotating cylinders 11. Mon. Not. 
R. Astron. Soc. 228, 77. 

GOLDREICH, P. & LYNDEN-B~LL, D. I965 Spiral arms as sheared gravitational instabilities. Mon. 
Not. R. Astron. Soc. 130, 125. 

LANDAU, L. 1944 Stability of tangential discontinuities in compressible fluid. Akad. Nnuk. SSSR,  C. 
R. (Dokl . )  44, 139. 

MARCUS, P. S. 1990 Vortex dynamics in a shearing zonal flow. J. Fluid Mech. 215, 393. 

tangential shear instability in shallow water with supersonic fluid flow. JETP Lett. 37, 375. 

galaxies during the linear stage of hydrodynamic instability. Sou. Astron. Lett. 13, 406. 

atmosphere. J E W  Lett. 37, 378. 

fluid. J .  Fluid Mech. 71, 305. 

plane Couette flow. Phys. Rev. E 50, R4283. 

investigation of a forced circular shear layer. J. Fluid Me&. 187, 115. 

In Turbulence and Coherent Structrrves (ed. 0. Metais & A. Lesieur). Kluwer. 

shear flows. Europhys. Lett. 27 , 129. 



82 M .  Tomasini, N. Dolez and J .  Lkorat 

MOROZOV, A. G. 1977 Growth of spiral disturbances in the disks of flat galaxies through Kelvin- 
Helmholtz instability. Sou. Astron. Lett. 3, 103. 

MOROZOV, A. G. 1979 Generation of spiral structures in flat galaxies with double peaked rotation 
curves. Sou. Astron. Lett. 23, 278. 

NARAYAX, R., GOLDREICH, P. & GOODMAN, J. 1987 Physics of modes in a dilTerentially rotating 
system-analysis of the shearing sheet. Mon. Not. R. Astron. Soc. 228, 1. 

NEZLIN, M. V., POLIACHENKO, V. L., SNEZHKIN, E. N., TRUBNIKOV, A. S. & FRIDMAN, A. M. 1986 
Interarm vortices predicted by laboratory simulations of spiral structures. Sob. Astron. Lett. 
12, 213. 

NEZLIN, M. V. & SNEZHKIN, E. N. 1993 Rossby vortices, Spiral structures, Solitons: Astrophysics and 
Plasma Experiments in Shallow Water Experiments. Springer. 

ORSZAG, S. A. & KELLS, L. C. 1980 Transition to turbulence in  plane Poiseuille and plane Couette 
flow. J .  Fluid Mech. 96, 159. 

PAPALOIZOIJ, J. C. B. & PRINGLE, J. E. 1984 The dynamical stability of differentially rotating discs 
with constant angular momentum. Mon. Not. R. Astron. SOC. 208, 721. 

ZASOV A. V. & ZOTOV, V. M. 1989 How often should disk galaxies have double-humped rotation 
curves? Sou. Astron. Lett. 15. 90. 


